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On the out-of-equilibrium relaxation of the 
Sherrington-Kirkpatrick model 

L F Cugliandolot and J Kurchant 
Dipathento di Fisica. Universita di Roma I, 'La Sapienra', I" Sezione di Roma I, 
1-00185 R o w  Italy 

Received 19 November 1993. in final form I I  March 1994 

Abstract. Starting from a sec of assumptions on the long-time limit behaviour of the non- 
equilibrium relaxation of mean-field models in the thermodynamic limit, we derive analytid 
results for the long-rime relaxation of the Shemugton-Kirkpatrick model, starIing from a random 
wnfiguration. 

The system never achieves local equilibrium in  any fixed sector of phase space, but remains 
in an asymptotic out-of-equilibrium regime. 
We clearly state and motivare the assumptions made. For the study of the out-of-equilibrium 

dynamics of spin-glass models, we propose as a tool, both numerical and analytical, the use of 
'hiangle reldons' which describe the geometly of the configurations at three nong) different 
times. 

1. Introduction 

In the past few years, most of the study of spin-glass physics has concentrated on the 
Gibbs-Boltzmann equilibrium measure. As a result of these efforts the mean-field theory 
is quite well understood [1,2]. The picture that has emerged is one of a phase space with 
an extremely complex landscape with many minima separated by barriers, some of which 
are infinitely high. Such divergent barriers lead to ergodicity breaking; a large system is 
not able to explore the phase space in finite times. For low dimensionalities, the mean field 
is not exact and the situation is still controversial. In particular, the question of ergodicity 
breaking and the existence of many pure states is still not settled [3,4]. 

One of the most striking phenomena observed in the low-temperature phase of real spin 
glasses is the ageing effect [5,6]: the relaxation of the system depends on its history even 
after very long times. Although ageing effects seem unusual from the thermodynamical point 
of view, they have been observed in numerous disordered systems, e.g. in the mechanical 
properties of amorphous polymers [7], in the magnetic properties of high-temperature 
superconductors [8 ] ,  etc. The ageing regime is essentially out-of-equilibrium and, therefore, 
one has to face the dynamical problem in order to understand most experiments; the study 
of the Gibbs-Boltmann weight yields only partial information. 

Several phenomenological models have been proposed to account for ageing effects in 
spin glasses (91. In particular, a scenario for the basic mechanism of ageing to which we 
shall refer below has been proposed by Bouchaud [IO] (see also the early work of [Ill). 
The main idea is that of 'weak ergodicity breaking', i.e. the system is not allowed to access 
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different ergodic components but the relaxation takes place in a rough landscape with ‘traps’ 
and the distribution of the ‘trapping times’ does not have an upper bound. 

Still, one would like to have a satisfying microscopic description of the dynamics of 
spin glasses and, in particular, of the effects mentioned above. In this respect, there are, 
on one hand, some numerical simulations of realistic systems [12, 131 which yield results 
in good agreement with experiment. On the other hand, the analytical understanding of the 
out-of-equilibrium relaxation in the thermodynamic limit is much less developed than that 
of the Gibbs-Bolt” measure; it is only recently that attention has been paid to this 
problem. 

In [14] it was pointed out that mean-field models exhibit a rich phenomenology in 
the out-of-equilibrium dynamics, qualitatively similar to those of realistic models and 
experiments and some analytical results were obtained for a simple model, namely, the p- 
spin spherical model. One suggestion of that work is that the out-of-equilibrium dynamics 
of mean-field models can be (at least partially) solvable analytically. The reason for this 
is the weakness of the long-term memory: the system remembers all its past but in an 
averaged way; short-time details tend to be washed away by the evolution. Later, numerical 
analysis bas shown that the m m  standard Sherrington-Kirkpahick (SK) model also exhibits 
an asymptotic non-equilibrium regime [15]. Besides, Franz and M6md [I61 have studied 
the out-of-equilibrium relaxational dynamics of a particle in  a random potential in infinite 
dimensions. They have numerically solved the closed set of mean-field causal equations 
and have obtained results on the lines of the general picture we shall assume here. 

Some years ago, Sompolinsky and Zippelius [17] infmduced a dynamical formalism 
for mean-field spin glasses and used it to study the relaxation within an equilibrium state 
of the SK model. Later, Sompolinsky [18] proposed to study the equilibrium (Gibbs- 
Boltzmann measure) of spin-glasses by considering a relaxational dynamics after a very 
long equilibration time and for large but finite N ,  The finiteness of N guarantees ergodicity 
by allowing for the penetration of barriers that diverge in the large-N limit. The existence 
of divergent barriers led Sompolinsky to postulate a hierarchical set of time scales which 
were taken as large and eventually went to infinity with N .  

However, in a true experimental situation the system is macroscopic and does not 
reach equilibrium even for very long times. Thus, in order to make contact with the 
observations, we shall study the relaxational dynamics starting from a random configuration 
in the thermodynamic limit, i.e. making N infinite from the outset. We shall concentrate 
on the asymptotics for large times, but throughout this paper we shall understand ‘large’ 
as t -+ CO after N --t CO (the opposite order to that considered by Sompolinsky). Under 
these circumstances, the dynamics is by definition restricted to one ergodic component (not 
a synonym of ‘state’ since we are away from equilibrium). 

The mean-field dynamical equations then hold rigorously and the solution is unique (if 
one considers the opposite order of the limits, then one bas to consider multiple solutions, 
just as in a system with instantons 1191). 

Having already set N -P CO, the mean-field equations of motion have no parameters 
that become infinite and a priori there are no time scales that go to infinity with an external 
parameter. However, the solution to the mean-field equations of motion may exhibit infinite 
time scales under the conditions of weak ergodicity breaking. 

In this scenario, the divergent barriers separating ergodic components are unsurmount- 
able by hypothesis and the system never leaves one ergodic component. However, the 
landscape has, within each ergodic component, traps separated by finite barriers of all 
heights (which are surmountable for long enough times). 

As the system ages, it becomes more and more trapped and faces larger and larger 
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barriers simply because it has already crossed the smaller barriers and has had more time to 
find more ‘trapping’ traps. In other words, an older system ‘sees’ a more rugged landscape, 
of course, not because the actual landscape has changed with time, but because of simple 
probabilistic reasons. The fact that there is no upper limit to the size of the finite barriers 
makes it possible for this process never to stop and the system never to reach equilibrium. 

Consider a two-time function, for example, the autocorrelation function C(tw + t ,  tw) .  
The preceding discussion suggests that the behaviour of the relaxation of the correlation 
function in terms of t is affected by the overall ‘age’ tw. Indeed, it turns out that the 
‘age’ tw automatically plays a very similar role to the one played by N in the Sompolinsky 
dynamics: it controls the height of the barriers that are relevant at such times. After a very 
large time t,, the system becomes very trapped and any subsequent motion (apart from a 
fast relaxation inside a trap) takes times that blow-up with tw. It is clear at this point that if 
the age of the system is what drives the time scales, then it is essential that the correlation 
function be non-homogeneous in time (i.e. not a function o f t  exclusively). 

Having not maked the assumption of homogeneity in time, we shall obtain that there is 
no time t, such that, for all tl > tz > t.9, the two-time ( t l ,  tz) functions (e.g. correlation 
and response functions) obey the equilibrium relations, fluctuation-dissipation theorem (FDT) 
and homogeneity. This means that the system does not reach equilibrium, not only in the 
(expected) sense of not reaching the Gibbs-Boltzmann distribution, but also in the wider 
sense of not reaching any time-independent dishibution in a fixed restricted sector of phase 
space. In other words, the dynamics is different from local equilibrium for all times. 

One consequence of these assumptions is that for an infinite system that is rapidly 
quenched below the critical temperature there is no way to further change the external 
parameters slower than the intemal dynamics of the system, there being no upper time 
scale. The question of adiabaticity becomes subtle at precisely the critical temperature 
where the upper time scales change from finite to infinite. One expects that what happens 
in the adiabatic cooling of an infinite system across the transition temperature is dependent 
on the nature of the dynamical phase transition [ZO]. 

In short, we shall analyse here the out-of-equilibrium dynamics of the SK model basically 
inspired by the previous results obtained for the simpler p-spin spherical model [14], the 
numerical simulations of 1151 and the phenomenological picture of Bouchaud [lo]. 

The outline of the paper is as follows. In section 2, we review the SK model and its 
relaxational dynamics. In section 3, we present the assumptions of weak ergodicity breaking 
and weak long-term memory on which the subsequent treatment is based. In section 4, we 
discuss the asymptotic equations and their invariances and make two further assumptions 
suggested by these invariances. Section 5 is devoted to rather general properties of the 
geometry of the triangles determined by the configuration at three different times and to the 
discussion of the ‘correlation scales’. This last discussion is not particular to the SK model. 
In sections 6 and I, we construct the solution to the asymptotic equations. 

The results of this paper are by no means exhaustive, although they possess several 
consequences that can be verified numerically and that are expressed in terms of 
experimentally measurable quantities. Some of these are presented in section 8 where 
we also mention some results of [16] relevant to this discussion. Our aim there is only 
to suggest possible numerical tests which we do not pursue exhaustively in this work. In 
section 9, we give a qualitative description of our results and contrast them with those 
previously found in [ 141 for the p-spin spherical model. Finally, in the conclusions, we 
summarize our results, we discuss the relationship with Sompolinsky dynamics and we point 
out some of the many open problems. 
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2. The relaxational dynamics of the SK model 

The SK Hamiltonian is H = -CL, Jjjsis,, where the interaction strengths Jj, are 
independent random variables with a Gaussian distribution with zero mean and variance 
JZ = 1/(2N). The overbar stands for the average over the couplings. The spin variables 
take values k l .  For convenience, we consider a soft-spin version 

L F Cugliandolo and .I Kurchan 
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U 

l N  N 

H = - h j w j  + a  - 1)' + - hi i...i,si, . . . S I ,  (2.1) 

-CO < si < CO. V i .  Letting Q + CO, one recovers the Ising case, although this is not 
essential. Additional source terms (hi time-independent) have been included; if r = 1, 
the usual coupling to a magnetic field hi is recovered. 

Nr-1 
i < j  ii <...si. 

The relaxational dynamics is given by the Langevin equation 

where & ( t )  is a Gaussian white noise with zero mean and variance 2ro. The mean over 
the thermal noise is hereafter represented by {.). 

The mean-field sample-averaged dynamics for N + CO is entirely described by the 
evolution of the two-time correlation and the linear response functions [17] 

Following [14], let us introduce the generalized susceptibilities 

and their generating function P&) 

(2.3) 

The interest of the function P&') is that if a system reaches equilibrium within a fixed 
restricted sector of phase space then it is easy to show that P&') should be just a delta 
function. We shall see that this happens only for T > T,. 

3. Weak ergodiciity breaking 

As in 1141, we shall make the following two assumptions, supported by the numerical 
simulations of this model 1151: 
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(i) 'Weak' ergodicity breaking 

lim C ( t ,  t') = 0 V fixed t' 
:-bm 

This means that the system, after a given time t', starts drifting away (albeit slowly) until 
it reaches, for sufiiciently large times f ,  the maximal distance C = 0 (see section 8). This 
statement has to be slightly modified in the presence of a magnetic field; in this case '0' has 
to be substituted by the maximum distance compatible with the remanent magnetization. In 
particular, this implies that the remanent magnetization C(t ,  0) tends to zero in the absence 
of a magnetic field. 

(ii) 'Weak' long-term memory: 

r+m l im/r 'd t"G(t , t ' ' )=  0 r-tm lim x ( t , f ' ) = O  Vfixedt' (3.2) 

where ~ ( t ,  t') is the normalized (linear) response at time t to a constant small magnetic 
field applied from t' = 0 up to t' = t', often called the 'thermoremanent magnetization' 
(see section 8). 

This hypothesis is quite crucial since the response function represents the memory the 
system has of what happened at previous times: the weakness of the long-term memory 
implies that the system responds to its past in an averaged way; the details of what takes 
place during a finite time tend to be washed away. 

(ui) Finally, we shall make the usual hypothesis that after a (long) time t' there is a 
quick relaxation in a 'short' time t - t' to some value q .  followed by a slower drift away. 
The parameter q is interpreted in the Sompolinsky-Zippelius dynamics as the Edwards- 
Anderson parameter for a state 1171. Here the word 'state' certainly does not apply (since a 
true state is a separate ergodic component) but we may picture q as the size of a 'trap' or the 
'width of a channel'. Within these traps the system is fully ergodic while it becomes more 
and more difficult to escape a trap as time passes. The correlation and response functions 
are, thus, written in a way that explicitly separates the terms corresponding to the relaxation 
within a trap 

C(t , t ' )  =CmT(t,t')+C(t.t') 

G(r, t') = GFDT(~, t') + G(t, t?. 

Consistently, Cm(t, t 3  and Gm(t,  t') are assumed to satisfy the equilibrium relations, 
i.e. time homogeneity and the FDT 

C m ( t ,  t') = CmT(t - t') 
Gmft,  1') = Gm(t - t') 

acm(t - t i )  

at' 
G m ( t  - t') = 
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The equilibrium dynamics within a state has been solved with these assumptions [17]. 
Since this calculation remains the same for the out-of-equilibrium dynamics, although the 
'state' must be reinterpreted as a 'trap', we shall not discuss it in this work. We shall 
concentrate on the evolution of the long-time functions C and G and, furthermore, we shall 
restrict ourselves to the dynamics of the model near and below the critical temperature, 
T = & - 7 with 7 small. 

4. Asymptotic equations 

The full dynamical equations have been written down by Sompolinsky and Zippelius [17]. 
They are rather cumbersome because, just as in the static case, the spin variables cannot be 
explicitly integrated away. 

Under the assumptions made in the preceding section, i.e. weak ergodicity breaking 
and weak long-term memory, one can find equations for the evolution of C and G valid 
asymptotically for large times t > t' near the transition. They have been presented in [all 
and they correspond to the dynamical counterpart of the 'truncated model', the statics of 
which were solved by Parisi 111. (The derivation can be achieved in a way that makes the 
contact with the static freeenergy functional near Tc clear by writing the dynamics in the 
supersymmetric notation [22,23].) In the absence of a magnetic field, the equations read 

2(t - q)C(r, 1') + yC3(t, r') + dr"C(r, r")G(t', t") + /"dr"G(t, t")C(r', t") 6' 0 

f 

9- l dt"G(t, t")C(r", t') = 0 (4.1) 

(4.2) Z(Z - q)G(t, t') + dt"G(t, f')G(t", t') + 3yCZ(t, t')G(t, t') = 0 l* 
and y = 3.  In these equations causality is assumed: 

G(t, r') = 0 for t < t'. (4.3) 

These equations do not contain derivatives with respect to time; they have been neglected 
following the assumption of slow variation of C and G for long times. 

Evaluating equation (4.2) in t = t' implies either G ( t ,  I) = 0 (corresponding to the 
high-temperature regime) or 

2(7 - q )  + 3yq2 = 0. (4.4) 

From here, one can obtain the value of the Edwards-Anderson parameter which is also 
obtained in the static treatment [l]. 

Even if equations (4.1) and (4.2) are non-local, they can be interpreted as asymptotic 
if the crucial assumption of weakness of the long-term memory is made: equation (3.2) 
implies that the lower limit I" = 0 in integrals such as 

d t"C( t ,  t")G(t, t") (4.5) 
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can be substituted by any lower limit t” = to and this has no effect in the integral as long 
as t and t‘ both go to infinity. 

As has often been noted [11,18,21], the asymptotic equations for C and P have an 
infinite set of invariances. Indeed, if we perform an arbitrary reparametrization of time 

i = h( t )  2 = h(t’) (4.6) 

where h is an increasing function and we redefine 

e(?, 2 )  = C(h(t) ,  h(r‘)) &, 2) = h’(t‘)G(h(t), h(t’)) (4.7) 

then the transformed functions e and 6 satisfy the same equations in terms of the 
reparametrized times. This means that, given one solution, we can obtain infinitely many 
others by reparametrizations. 

This invariance is a consequence of having neglected the time derivatives in making 
the asymptotic limit. The full dynamical equations have no such invariances; because of 
causality their solution is unique. The best we can do with equations (4.1) and (4.2) is 
find a family of asymptotic solutions (related by reparametrizations). Which one is actually 
the correct (unique) asymptote can only be decided from equations that do not neglect 
time derivatives. Throughout this work, we shall try to go as far as possible, k e e p i  
the discussion at the nparametrization-invariant level: we shall only obtain solutions 
modulo reparametrizufionr (however, the relaxation within a trap, as solved in [17] is 
well determined and not affected by this invariance). 

With this in mind, we shall make the following two further assumptions: 
(iv) C and G are related by a reparametrization-invariant formula. Let us first note that 

because of weak ergodicity breaking without loss we can write 

ac(t, t i )  

at’ G(t, t’) = X[C(t, t‘), tq- e(t  - t’) (4.8) 

which dejines X. If we now impose that the relation (4.8) be reparametrization invariant, 
this can only be fulfilled by 

(4.9) 

where X depends only on the times through C. Indeed, under reparametrizations (4.6) and 
(4.7), this equation transforms into 

(4.10) 

i.e. it retains the same form. 
Furthermore, if we supplement the definition of X [ z ]  with X[z] = 1 for q < z < 1 

then the relation (4.9) holds for all C( t ,  t’), t’ large (cf equation (3.3)). X[zl may be 
discontinuous in z = q where it jumps from X[q] to 1. 

An immediate consequence of equation (4.9) is that all generalized susceptibilities (2.3) 
are given by 

4 
Z‘ ( t )  = (1 - q‘) + 1 X[q’ld($). (4.1 1) 
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Hence, the dynamical generating function of the generalized suceptibilities P&) 
(equation (2.4)) and, in particular, the asymptotic energy, are entirely determined by the 
function X[zl and q. 

Indeed, assumption (4.9) can also be seen to relate to the fact that the Z ' f t )  have a finite 
limit as t --t bo. 

(v) Given three large times tmin < ha < t-, the corresponding three configurations 
~ ( t - ) ,  s(hnt) and s(tmi.) define a triangle the sides of which are given by the three 
correlations C(tht, tdJ, C(rm, t d )  and C(tm, ria). For the three times tending to infinity, 
we propose that the correlation between the extreme times C(t- and finin) is completely 
determined by the correlations between the extreme times and any intermediate time 
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C(tm+ tdtJ f[ct~nm~ tint)+ C(tint, tamin)]. (4.12) 

In other words, we are assuming that when tmi. + bo. the correlation C(tm, tfi,,) only 
depends on tmin and tmar through the other two correlations. Note that because of weak 
ergodicity breaking it would have been IU) assumption to write 

Assumption (v) is equivalent to stating that given a fixed value of C(t-. 
by the dynamics, the following limit exists: 

= C allowed 

(4.14) 

The relation f is not necessarily smooth and we shall see in the following sections that 
in fact it is not. We can formally invert t h i s  equation by defining the inverse function f t  

C(tint, tmin) = f I ~ ( t - 9  tint). C(tmv tmin11. (4.15) 

We are proposing relation (4.12) for the whole range of values of C, including the FDT 
sector. 

Both assumptions made in this section are amenable to numerical checks and we shall 
discuss them in detail in section 8. 

5. lnangle relations 

In thii section, we shall study the properties of the function f, defined in equation (4.12). 
A priori, f has no reason to be smooth, though we shall assume throughout that it is 
continuous. All the results we shall present in this section are general, they do not depend 
on any particular model but just follow from assumption (v) (cf equation (4.12)). 

t Note that in the definition of f ,  Lhc smallest q m e n t  is  always on tk right. 
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5.1. Basic properties 
The first trivial properties are 

which are obtained by choosing tinl = tdn and tint = t-, respectively. 
f (X>  1) = f(1.x) = x  (5.1.1) 

Since we are assuming that the system drifts away at any time, namely, assumption (i) 

(5.1.2) 
f(a, Y )  > f ( b ,  y )  if a > b 

f ( y , a ) > f ( y , b )  i f a > b .  

ffa. 1) = a > f(a. b) 

f(1, b) = b 2 f(a, b) 

In particular, for any (a, b), 

(5.1.3) 

and this implies 
f ( a ,  b)  < min(a,b). (5.1.4) 

C(t43fl) = f [ W 4 *  t31, C(t3, till 

= f r w 4 r  t2). w 2 .  tl)l 

= fIC(t4,t3). f [ W 3 ,  tZ)I W Z ,  tl)ll 

= f [f r w 4 ,  t 3 ) ,  w 3 ,  td1. W Z ,  t i ) ] ]  

Consider now four successive times tl < tz rc t3 < 4.  We have 

(5.1.5) 

i.e. f is associntive. 

the choice of the function f. 

satisfying equations (51.1). (5.1.2) and (5.1.5) are 
f ( a ,  b) = min(a, b) 

the ultramehic relation and 
f (a, b) = ab. 

The existence of a neutral (5.1.1) and the requirement of associativity severely restricts 

WO important examples of functions (the first one not smooth, the second one smooth) 

(5.1.6) 

(5.1.7) 
One can check that this last relation corresponds to the vector s evolving in such a way 

that the direction of the trajectory at two times is uncorrelated; i.e. which spin flipped at a 
given time is independent of which spins flipped before. The spherical triangle determined 
by s( tdn) ,  s(tiot) and s(t-) is then, for probabilistic reasons, right-angled. 

As an example of the physical meaning of the function f, consider the slight variation 
of equation (5.1.7) which was found in [14] for the long-time correlations C of the p-spin 
spherical model 

4 4 
(5.1.8) 

This can be understood if one defines the 'magnetization' vector for large times t as 

mi(?) = - I" d 7 d t  + TI (5.1.9) 

( A  + 00, A / t  + 0). Then a short computation shows that ( l / N ) C i m !  + q and 
C(t, t')/q is the cosine of the angle subtended by m(f) and m(t') at two widely separated 
times (t - t' >> A). Then, equation (5.1.8) implies that the magnetization vector m(r) 
describes a trajectory without memory of the direction and, hence, makes right-angled 
triangles in any three large (and widely separated) times. 
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5.2. CorreIation scales 

Consider now the function f ( a , a )  satisfying (cf equations (5.12)) 

L F Cugliandolo and J Kurchan 

f (a, a) < a. (5.2.1) 

The above inequality admits fixed points a; such that f(a;, a;) = a:. These points can be 
isolated or they can form a dense set. In figure 1 we sketch a possible function f (a, a). 

Figure 1. A sketch of the function f (a. a) against a, D E [O. I]. 

We now take a succession of (large) times to < q < . . . 4 tr, such that the correlation 
between two successive times is C(ri+,, t i )  = b, and compute the correlation C(t,,to) 
between the two extremes of the succession 

bk) C(t,, to) = f ( b ,  . . . f (b ,  f(&, b)) .  . .). (5.2.2) 

The function f is iterated ( r )  times and the order of parenthesis is immaterial because of 
associativity. Choose two correlation values corresponding to consecutive fixed points, say 
a; > 4 (see figure I), with no other fixed points in between. Then, it is easy to see that, 
given two values bl, b2 with a; > bl t bz t a;, there exists a finite number (s) such that 

be) < b2 (5.2.3) 

i.e. with a finite number of steps (iterations of f )  with correlation bl, we can go up to or 
beyond &. In contrast, if we consider a succession of steps each of correlation a* (a* is 
any fixed point), the correlation between the extremes never goes beyond a' for finite (s). 

This suggests that we define in a reparamPtriuuion-invan~t way a correlation scale as 
the set of correlations that can be connected by relation (5.2.3) for some finite ( 8 ) .  This 
breaks the whole interval of correlations into equivalence classes. 
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With this definition, a fixed point a’ constitutes a correlation scale in itself. An interval 
which is made up of a dense set of fixed points such as (a;, a:) in figure 1 is then a dense 
set of scales. 

The interval of correlations (none of them a fixed point of f (a, a) )  contained between 
two fixed points is a correlation scale which we shall call ‘discrete’. 

Note that the time difference (ritl - ti) needed to achieve a certain correlation is not 
independent of the time ti, but we can suppose that it does not decrease with time, i.e. 

C(t i+ l ,  t i )  = C ( & ,  ti-,) tit, - ti > ti - ti-1. (5.2.4) 

Then, the above definition of correlation scales translates into a definition of ‘infinite time 
scales’. 

5.3. Ultrametric relations 

Let us start by showing that the relation between fixed points is ultrametric. Let a;, (1; be 
any two fixed points with a: > (I; 

a; = f ( Q ; ,  4) < f(4. a;) < (1; 
a; = f ( a ; ,  a;) < f@;, a;, < a;. 

We have used here equations (5.1.2) and (51.4). Hence, for any two fixed points 

f ( a ; ,  a;) = f ( a ; ,  a;) = min(a;, 4) (5.3.1) 

and ultrametricity holds. 

and a number b such that a: > b > 
within the scale. Then, one has (see appendix A) 

Next, we consider a discrete scale limited by a,? and two consecutive fixed points 
We assume that f is a smooth function of x ,  y 

f (uf ,  b)  = (b. a;) = b V b E (a;t,, af)  

f ( ~ : + ~ , b ) = f ( b , a : ~ , ) = a i ; ,  V b E  ( ~ ~ ~ , + a ~ )  

i.e. af acts as the neutral and ai.,, as the ‘zero’ inside the scale. 
Consider now two different scales limited, respectively, by ay z ai;l and a; > a&,. 

Using the previous result, we now show that the relation f (b1,bz)  between two correlations 
belonging to each scale af > b~ 2 a$, and a; 3 bz > uzt, is ultrametric 

f ( b ~ ,  b ~ )  = f (b2 ,  bd = min(b1, bz). (5.3.2) 

(5.3.3) 

(5.3.4) 

(5.3.5) 
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Now choose bl satisfying a,'+i < bl 4 at. then 

f O z .  bi) = f(f(h a;), b d  = f(bz, f(a,& W )  = f ( b z ,  0;) = bz. (5.3.6) 

Hence 

f(bz, bil = bz (5.3.7) 

and similarly 

f (bi h) = bz. (5.3.8) 

Within a scale, ultramehicity does not hold, but if we assume that there f is smooth, 
it is then a one-dimensional formal group law and we have for bl , bz within the kth scale 
that f (b1,  bz) is of the form 

f @ i .  bz) = jri[N4 . Jdbz)] (5.3.9) 

for some function h ( x )  which can be different for each scale. This is a well known result 
from formal group theory [24] and we present it in appendix E. 

Furthermore, this implies that within a scale (see equation fB.10)) 

for some increasing function h ~ ( x )  (appendix B). 

6. Dynamical equations 

eauations ( 

(5.3.10) 

~ SK model In this section, we shall study the asymptotic dynan 
(equations (4.1) and (4.2)). We shall start by simplifying the equations using assumption 
(iv). 

Let us define two functionals 
q 

F[C] = -s, dc 'X[C']  (6.1) 

HIC] = - dC'C'zX[C']. (6.2) 

Note that even if X is discontinuous, F and H are continuous. Thus, inserting equation (4.9) 
in equations (4.1) and (4.2), we get 

l 
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This last equation can be integrated once with respect to t’ to give 

aF[C(t, r”)] 
at,, - 3yqZF[C(t, t?l + l ‘ d t ”  F[C(t”. t’)] + 3yH[C(t, t‘)] = 0. (6.5) 

We now have two reparametrization-invariant equations for C(t, t’) which have to be satisfied 
simultaneously. Equations (6.3) and (6.5) can be written in a form in which the times 
disappear using assumption (v). Indeed, with definition (4.15) they formally become 

- 3 y q 2 C + l  dC’X[C’If(C,C’) -{ 0 dC’F[P(C,C‘)l+S4dCiX[C’]j(C’,C)+ C yC3 = O  

(6.6) 

- 3yqZF[Cl + I’ dC’X[C’lF[f(C‘, C)] + 3yH[Cl = 0 (6.7) 

since f(C, C’) is not necessarily a well behaved function over the whole interval [0,1] and 
we shall take care of this point in the next subsection. Equations (6.6) and (6.7) together 
determine X[C] and f(C, C’). Having eliminated the explicit time dependence, we have 
effectively divided by the reparametrization group. In what follows, we shall concentrate 
on studying the solution to these equations. 

6.1. Equations within a discrete scale 

Let us take C belonging to a discrete scale C E (U;. U ; ) .  Due to the ultrametricity between 
different scales (cf equation (5.3.2)), we can use 

C C 

f ( C ,  C’) = C’ (6.1.1) 

when C is outside the scale of C’. This allows us to simplify equations (6.6) and (6.7) and 
furthermore, deal with a region where the function f(C, C‘) is smooth. In these regions, 
f ( C ,  C’) can be written as (see appendix B) 

(6.1.2) 

and since J ( Q ; )  = 1 

f lu; ,  C) = c. (6.1.3) 

Therefore, the equations become 

- 3Yq2C + GFIGl- CF[n;l+ YC’ - 2 dC’ F[C’l+ s,” dC‘X[C’]f(C, C’) 1”; 
dC‘F[f(C, C’)] + /“’ dC’XIC’lf(C’,C) = 0 

C 
(6.1.4) 

(6.1.5) 
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Evaluating equation (6.1.5) in C = a; and C =a;, respectively, we have 
3 y ~ t a ; 1 =  F [ u ; I ( F [ ~ ; J  +3yqz)  (6.1.6) 

3Yx[a;l= F[a;l(F[a;I +3yq2). (6.1.7) 
Moreover, differentiating equation (6.1.5) with respect to C and evaluating in C = a;, we 
obtain 

(6.1.8) 
and this implies X[a;] = 0 or 

X[a;l(-3yq2 - 2F[a;] + 3yar2) = 0 

(6.1.9) 

Differenting equation (6.1.5) twice with respect to C and evaluating in C =a;,  we have 

3Y 
FLU;] = -(a;' - q2). 

2 

(6.1 .lo) 

The derivative on the right-hand side can be calculated using equation (6.1.2) and is equal 
to one. Then, if Xla;] # 0 

X[a;] = 6ya;. (6.1.11) 

6.2. X within a discrete scale 
We shall assume that: 

(vi) X is a non-decreasing function. 
Under this last assumption, we shall show that X is constant within a discrete scale [B]. 

Differentiating equations (6.1.4) and (6.1.5) with respect to C, multiplying the first one by 
X[C] and subtracting, we obtain 

(6.2.1) 

Since this equation is valid within any scale, we see that a sufficient condition for 
equations (6.1.4) and (6.1.5) to be compatible is for X to be constant within each scale. 
Let us now show that if X is non-decreasing, this is the only possibility. Differentiating 
equation (6.2.1) with respect to C and then evaluating in C =a;  yields 

(6.2.2) 

This equation admits the solution X[af] = 0, which corresponds to the high-temperature 
phase. If this is not the case and assuming that X'[z] > 0, the integrand should vanish. The 
squared factor looks like 

(see appendix B) and does not vanish for C' > a;. Thus, 

for y E (q ,a: ) .  Hence, using equation (6.1.11) 
X[yl = X = 6ya;. 

XI[?] = 0 + X[yJ = x constant (6.2.4) 

(6.2.5) 
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6.3. No discrete scales 

Let us show that the discrete scales collapse. Using the fact that X is constant within the 
discrete scale, we have 

(6.3.1) 

(6.3.2) 

Putting this into equations (6.1.6) and (6.1.7) and using equation (6.1.9) we have 

(4 - a;)’[y(4 + 2a;) - XI = 0. (6.3.3) 

This equation gives, as one possible root, a; = 4a;, which is not acceptable since, by 
hypothesis, a; < a;. Hence, we are left with 

.;=a; (6.3.4) 

and this implies that each discrete scale is indeed empty. 
Having shown that there are no discrete scales (except for the FDT scale, which is not 

contained in the previous equations), one sees that the solution should verify ultramehicity 
for all values of the correlations C. 

It is interesting to remark that the solution for the asymptotic dynamics of the p-spin 
spherical model presented in 1141 can be easily obtained using this formalism. Indeed, 
the same steps followed in this section imply to the case a; = 0 and a; = q :  there 
is only one discrete scale (apart from the FDT scale) and the solution has the form of 
equation (5.3.10) [261. 

7. Ultrametric solution 

Let us now describe in detail the ultrametic solution. For ?,,,iD -+ CO, 

C(fmu, h J  = min(C(tm, r i d .  C ( h  t,,,iJ) if C(tm, tmid < q (7.1) 

and if C(tm, tmo) > q then the Sompolinsky-Zippelius solution holds. 
In the preceding section, we concluded that we have a dense set of scales, so that 

J ( C ,  C’) = C‘ v C’ < c. (7.2) 

Thus, equations (6.6) and (6.7) simplify to 

C C 
- 3yq2C - CF[C]  + yC3 + Jd dC’C’X[C’l - Jd dC‘F[C’l = 0 (7.3) 

(7.4) - 3yqZFfCI - (F[CI)’ + 3yH[Cl = 0 

3 y m 1  = F[Cl(F[CI + 3Yq3 

and from here it follows that equations (6.1.6) and (6.1.9) hold for every value C < q: 

3Y 
2 F(C1 = -(C2 - 4’). (7.5) 
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Differentiating equation (7.5) with respect to C, we obtain 

L F Cugliandolo and J Kurchnn 

X ( C )  = 3yc. (7.6) 

For Pd(q), this yields (cf equations (2.3), (2.4) and (4.1 1)) 

P d ( d ) = ( I  -x[q’l)G(q‘-q)+3Yu(qJ) (7.7) 

where U(q‘) = 1 if 0 < q’ < q. and zero otherwise. The value of q is given by 
equation (4.4). Hence, we have found that 

pd(q‘) = p(q’) (7.8) 

for the SK model, where P(q‘) is the Parisi functional order parameter associated with 
the Gibbs-Boltzmann measure [l], also implying that the dynamic and static transition 
temperatures coincide. This equality is not obvious and is a property of this particular 
model. Indeed, this same dynamics yields for the model of [14] a dynamic Pd(q) which 
is different 6om the static one. For the SK model, the energy and susceptibility to leading 
order in N coincide with the corresponding equilibrium values and the size of the ‘traps’ 
encountered for large times coincide with the size of the equilibrium states. 

In particular, ultrametricity implies that a plot of C(t,  t’) against t’ tends to have a long 
plateau. More precisely, consider the function 

(7.9) 

It is easy to see that equation (7.1) implies that e(,) drops from one to a certain value 4 
(0 < 5 < q )  in a small neighbourhood of p = 1, remains constant and equal to ij in the 
interval (0, 1) and drops from to zero in a small neighbourhood of p = 0. The actual 
value of 5 cannot be determined unless one goes beyond the reparametrimtion-invariant 
results. This last result was verified in [16] for the model studied there. 

8. Simulations and measurable results 

In this section, we discuss some consequences of the assumptions and derivations of the 
previous sections that can be checked with numerical simulations. Some of these involve 
magnitudes that are measurable experimentally; for a toy model such as the SK this is not 
such an advantage, but it would be desirable if some of these results also tum out to hold 
for finite-dimensional systems. 

Our aim here is not to make an exhaustive numerical analysis but to propose some 
checks that can be useful in the study of the out-of-equilibrium dynamics of spin glasses. 

Our results have been obtained in the thermodynamic limit for asymptotic times Iim,+- 
after lim,+,,. In a simulation, this means that one has to eliminate finite-size effects. 

First, the two initial assumptions 0) and (U) have already been observed in [15], where 
the out-of-equilibrium dynamics of the hypercube spin glass has been studied numerically. 
This model is expected to reproduce the SK model for high dimensionalities 127,281. 

Assumption (i). weak ergodicity breaking, has been verified by plotting the correlation 
function C ( t  + tw, t,) against t in a log-log plot for different waiting times tw (figure 3 in 
[15]). Furthermore, numerical simulations also support this assumption in the realistic 3D 
Edwards-Anderson model [ 131. 
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Assumption (ii), weakness of the long-term memory, or equivalently the decay to zero 
of the thermoremanent magnetization, has also been verified (figure 2 of [IS]). A similar 
behaviour has been obtained both for realistic models 1121 and experimentally [S, 61. 

Second, as a consequence of equation (4.9), the response x( t , t , )  inixoduced in 
equation (3.2) is given by 

Hence, for large enough times and t,, the times (c, t,) enter parametrically in a plot 
x ( t .  r,) against C ( t ,  t,) and all the points obtained for different pairs ( t .  t,) should lie on 
a single universal curve, the integral function 1? of X. 

The plot , y ( t , fw)  against C(t , t , )  for the hypercubic cell of dimension D = 15 at 
temperature T = 0.2 is shown in figure 2, together with the second integral of the static 
P(q’) evaluated in C( t ,  C,) for the SK model. The curves for different rw roughly coincide; 
the departure is not systematic with respect to tw. However, they do not coincide with the 
corresponding static curve for the SK model at that temperature. This could be an effect of 
the finite dimension D, not inconsistent with the static results of [27]. It was found there 
that the function P(4’)  for small q’ is quite smaller for the hypercubic cell of dimension 
D = 12 than for the SK model. 

W i d ,  assumption (iv) on the existence of the Iiangle relations and its implications can 
be tested numerically in the following way: 

(a) Choose a number C and a large number t,. 
(b) Determine the time tmM such that C(t,-, t,) = C. 
(c) Plot, for all times t (t,  < f < r-), C(tm, t )  against C(t ,  t,). 
(d) Repeat the procedure for a larger t, and the same C. 
The limiting curve, obtained as tw becomes larger, is the (implicit) function given by 

equation (4.12) 

c = f k  Y )  (8.2) 

or 

y = f(x.C). (8.3) 

The existence of such a limiting curve and its continuity (but not necessarily differentiability) 
is just the content of assumption (v). Hence, we see that such an assumption is indeed quite 
plausible since it is difficult to think of a situation in which this does not happen. 

If, as has been found in the previous sections, ultrametricity holds, then the area limited 
by the horizontal line x E [C, I], y = C, the vertical line x = C, y E [C, 11 and the 
curve constructed following the procedure above would vanish when t, + cat. Studying 
the behaviour of this area is more practical than simply looking at the curves, since its 
calculation involves many points and reduces the noise. In figure 3, we present the curves 
obtained in this way (N.B. these curves have been smoothed using a local interpolation in 
order to better show the qualitative tendency; error bars of order N 0.01 should be taken into 
account). In the inset, we include a log-log plot of the area against f,. The approach of the 
curves to their limit is very slow and this could raise the suspicion that this is a finite-size 
effect. We have checked. however, that for a system four times smaller the decrease in area 

t In the p-spin spherical model one expects instead the limiting curve y = qC/x (cf equation (5,l.S)). 
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is not very different. The qualitative trend does not depend on the temperature; we have 
also checked these results for higher subcritical temperatures, though we shall not present 
them here. Finally, note that the value of q (zz 0.92 for T = 0.2) is easily seen in the 
figure. 

Because the correlation functions, even though easy to compute numerically, are hard 
to measure in an experimental system, it is convenient to have a relation involving only the 
easily measurable quantity x .  Consider the function 3 defined by 

x ( t ,  t') =3(x(t, f"), x(t".t". (8.4) 

From the preceding sections, we have that 

F(x, y) = P[f(F-'[xl, P-'[yl)I (8.5) 

so that if f is associative (commutative) then 3 is also associative (commutative). Indeed, 
3 and f are isomorphic as a group law [24] and all results quoted for the function f cany 
through to 3. In the ultrametric case, since P is a growing function, we have 

F(x, Y) = &n(x, Y) .  (8.6) 

Although the results of the present paper are in principle only valid for mean-field systems, 
we have not resisted the temptation to check this last relation with the experimental data 
for spin glasses of [6] with negative results. The fuction ~ ( t ,  f ' ) ,  for experimental systems, 
follows an almost perfect ?' / I  law and is, in this sense, more similar to a system with 
discrete scales. 



Out-of-equilibrium relaration of the SK model 5761 

1 ,oo  4 I 

- 
L 

3 4 5 6 7 8  

0 80 - - 

0.75 - - 

0.70 0.75 0.80 0.85 0.90 0.95 1 0 0  

C l t  t“1 

P i p  3. C(&, t )  plotted against C(t .  tW), r, 4 t < rm, for fixed C(f,,,=, fw) = 0.7. D = 15 
and T = 0.Z; the four curves correspond to r, = 100,300, 1030 and 3000. In the inset log-log 
plot (area against t,) D = 15. T = 0.2 and r, = 30,100,300, lW0,3000. 

A detailed analysis of the numerical solution of the mean-field dynamical equations 
corresponding to the relaxation of a particle in a random potential in infinite dimensions 
was carried out in [16]. In particular, it is verified there that the results for large waiting 
times coincide with those of the static treatment to order N with great precision. This 
coincidence is also found here for the SK model, but not in the p-spin spherical model [ 141. 
The common element of the former two models is that the replica analysis of their statics 
involves an infinite number of breakings of the replica symmetry, while the p-spin model 
has statically only one breaking and dynamically only one discrete scale apart from the mT. 

An easy test of the correctness of the solution we find within this scenario is to analyse 
the large-time behaviour of, for instance, the energy and susceptibility. In the case of the 
SK model, the energy density should relax to the equilibrium value, while in the p-spin 
spherical model it should relax to a threshold value above the equilibrium value [29]. 

9. Dseussion 

We are now in a position to qualitatively discuss the out-of-equilibrium dynamics of this 
model. 

The system first relaxes rapidly to an energy which is slightly above the equilibrium 
energy. In this region it starts encountering ‘traps’. Within a trap, the relaxation is rapid 
and described by Sompolinsky-Zippelius dynamics [17]. 

As time passes, the energy relaxes slowly towards the equilibrium value, and the O ( N )  
difference between the dynamical and equilibrium energy goes to zero. The actual states 
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contributing to equilibrium have an energy differing by only O(1) from the lowest state 
[2] and are not reached in finite times. However, their cousins, the long-time traps, 
resemble them in their geometry (value of q,  relaxation within them) except that the barriers 
surrounding a true state are divergent, while those surrounding traps are finite, though large. 
The evolution away from traps becomes slower and slower as time passes so that traps 
encountered at longer times tend to increasingly resemble the actual states contributing to 
the equilibrium. 

The fact that the system relaxes to values that are equal to order N of the equilibrium 
values (energy, P&). etc) and that the dynamical and static critical temperatures coincide 
is no# a general feature of the spin-glass out-of-equilibrium dynamics but a property of 
this model. A different situation has been found for the p-spin spherical model [14] in 
which the non-equilibrium dynamics goes to a threshold level that is above (to O(N)) the 
states that contribute to the Gibbs-Boltzmann measure (and, hence, P&) # P ( q )  and 
the asymptotic energy is different from the Gibbs-Boltzmann-measure energy). The reason 
for this difference can be seen by considering the TAP approach. In the p-spin spherical 
model, all the TAP valleys below the threshold are separated by infinite barriers and have 
a positive-definite Hessian. The system should remain trapped within any of these barriers 
but never does because it remains touring at the threshold energies above which there are 
no valleys and below which the harriers are O(N), i.e. in the small range of free energies 
in which the barriers are O(1). 

In the SK model, there seems to be no threshold of this kind in the sense that the TAP 
valleys of the free energy encountered above the equilibrium free energy should be separated 
by only O(1) barriers. This is quite reasonable if one accepts that most of these solutions 
(unlie the ones of the p-spin spherical model) are ‘born’ by division of other solutions as 
the temperature is lowered and, moreover, their Hessian contains zero eigenvalues [30]. 

We also note that both the hypotheses of weak ergodicity breaking and of weakness of 
the long-term memory can be understood within this scenario. Since no traps are m e  states, 
the system eventually drifts away, forgetting the characteristics of any given trap (and in 
particular its magnetization). 

L F Cugliandolo and J Kurchan 

10. Conclusions 

We have presented the relaxational dynamics of the SK model in the thermodynamic limit in 
a way that naturally involves an asymptotic out-of-equilibrium regime and ageing effects. 
We have restricted ourselves to a situation in which the system is rapidly cooled to a 
subcritical temperature and every extemal parameter is afterwards left constant, as in some 
experimental settings. A different approach to the dynamics is to explicitly consider cbauges 
in the extemal parameters such as the temperature l20.211. 

We have shown that the asymptotic dynamical equations can be solved under mild 
assumptions which we have tried to state as explicitly as possible. Since we are not allowing 
for the crossing of infinite barriers, all the assumptions can be checked numerically with 
relatively small computer times and we have presented preliminary results in this direction. 
We have derived a set of equations containing only the correlation function and the relation 
between three correlations (triangle relation) and we have found that the unique solution to 
these equations implies ultrametricity for every three widely separated times. Without the 
assumption of time homogeneity and in the absence of any extemal parameter controlling 
the scales, it is not a priori obvious how to define these scales. We have given a precise 
definition of correlation scales which can be applied to other models. 
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The present treatment has important common elements with both the static-replica 
analysis and the Sompolinsky dynamics. 

As regards to the former, this is due to an underlying formal algebraic similarity 
between the replica treatment and the asymptotic dynamics. Quite generally, the asymptotic 
dynamical equations can be derived using this similarity and their solution has a connection 
with the replica solution with an ansatz h la Parisi 1231 (although this does not necessarily 
mean that the statics and asymptotic dynamics should give the same results for every model). 

It is worthwhile discussing in more detail the similarities and differences with 
Sompolinsky’s dynamics. In that framework, one assumes time homogeneity plus a relation 
like (4.9) between the correlation and response functions. Then one further assumes that the 
correlation function relaxes (ever more slowly) to zero for widely separated times (in the 
absence of a magnetic field). With these assumptions one hopes to have a representation of 
the equilibrium dynamics after an infinite waiting time and for large but finite N. 

A well known problem of thii picture is that the decaying to zero of the correlations 
is incompatible with the equilibrium solution [2] unless one considers multiple dynamical 
solutions for times long enough as to allow for infinite-barrier crossing [19]. Moreover, 
there is an additional puzzle: the hypothesis of time homogeneity applied to the p-spin 
spherical model fails to give the equilibrium values [Z]. 

After the work of Sompolinsky, Ginzburg [ 111 considered the effect of a perturbation 
on a spin glass which is already in equilibrium [I 11. This is different from our approach 
since we do not assume that the system has reached equilibrium and we find that it never 
does. Furthermore, the mechanism for barrier crossing we invoke here is not related to the 
size of the system but rather to its age. 

As mentioned in the introduction, we work here with N infinite, and any infinite time 
scale arises not because N or any other parameter go to infinity hut because it is the very 
age of the system which imposes the rhythm of the relaxation, which eventually becomes 
very slow. The assumption that the correlations go to zero in this context is just related 
to weak ergodicity breaking and the observable ageing effects and does not contradict the 
statics. Furthermore. since we are considering finite albeit long times, the solution for 
the correlation and response functions is unique. Yet the fast relaxation for small time 
differences (but large overall times) is identical to the one found by Sompolinsky-Zippelius 
with the only change being the reinterpretation of the state as a trap or channel fkom which 
the system always escapes. 

As noted in section 5, all the results in this paper are invariant with respect to 
reparametrizations in time. This invariance is not a true property of the dynamics, 
but is the result of using equations of motion that are, for large time differences, only 
asymptotically valid. The true solution has to choose one asymptote between all the family 
of reparametrizations we have obtained. This problem is quite common in the asymptotic 
matching of the solutions to differential equations. The application of such concepts to the 
spin-glass problem is still an open question. Many of the most interesting results (decay 
law of the energy, of the magnetization, etc) will only be available when one will be able 
to go beyond reparametrization invariance. 

There are quite a few open questions, even at the level of reparametrimtion-invariant 
results. One would like to have a deeper understanding of the function X(C) and the 
dynamical generating function Pd(q).  It may be that some general theorems can he derived 
for the asymptotic non-equilibrium regime. 

Some of the questions discussed here are quite general and it would be interesting to 
try them in other models. 
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Appendix A 

In this appendix, we show that, assuming that f ( x .  y) is smooth within a discrete scale, the 
upper limit of the scale ace as the neutral (i.e. like the identity in a product) and that the 
lower limit acts as the zero in the product. 

The associativity relation (5.1.5) implies 

Consider an isolated fixed point a; separating two discrete scales and set y = z = a; in the 
above equation: 

since f (x, a;) is continuous and f (a:,  a ; )  = U ; ,  g(a;) = a;. For x > a;, this is a possible 
solution. For x < a;, f ( x ,  a;) < x < a;,  so this solution is not admitted in this case. 

The other solution to equation (A.2) is 

Consider the successive fixed point 4 < a; .  f ( x ,  a i )  satisfies 

(-4.4) 

4 < f ( x ,  0;)  < a ;  (A.5) 
and, because of equation (51.2). f ( x , a ; )  is a monotonically increasing function of x .  
Equality on the left-hand side takes place when x = a; and on the right-hand si& when 
x = a;. Hence, for every w within the discrete scale, we can solve w = f ( x , a ; )  for x .  
Equation (A.4) becomes 

V y E (a;, a i ) .  The solution is f (y. a;) = y + k(a;); since f (a;, a;)  =a;,  then &a;) = 0 
and we have finally 

f ( y . 4  = Y. (A.7) 
This solution is only possible if y c a;. Otherwise. y = f(y, a;)  < a; and this is 
incompatible with y > a i .  

Hence, for x within a discrete scale, 4 < x < a;. equations (A.3) and (A.7) imply 

f ( x , a z * ) = 4  

f ( x , a ; )  = x 

and a; and a; are the zero and neutral, respectively. 

(A.8) 
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Appendix B 

In this appendix, we review some results of formal group theory that give the general form 
of f (x .  y )  within a discrete scale. Let a; and 4 be two consecutive fixed points U; > a*. 
We assume that f ( x ,  y) is smooth for x ,  y E (a;. a;]. From (A.@, we have that U ;  is the 
neutral element within this range. Under this assumption, one can show that [24]: f ( x ,  y )  
is commutative and can be written as 

(B. 1) f (1, Y) = e-' 0 ( e ( x )  + K Y ) )  
with t ( z )  given by 

= 0. Because we are within a discrete scale, the denominator in the integral is positive 
definite for z' E (U;, a;] and it first vanishes in z' = 4. The function t ( z )  is increasing 
and negative semi-definite (e@;)  = 0). 

We can also define 

J(Z) = e x p ( W )  (B.3) 

to obtain 

f ( x , Y ) =  J - ' O ( J ( x ) ' I ( Y ) ) .  

Writing (B.l) in terms of the correlations at three times 

the crossed second derivative vanishes 

= 0. a2e c(tm, t,n) 
at-at,, 

The solution to this equation is 

e ~ c ( t ~ , t ~ ) = r ; , ( t ~ ) - ~ ~ ( t ~ )  (B.7) 

for some functions K1, r72. Inserting this into (~.5), we see that i l ( t )  = I;z(t) = &t). If 
we now define A(r) implicitly by 

C(f ,  h(t))  = U *  (B.8) 

where a* is the largest correlation in the scale, for large t we have 

l i  K ( f )  -&A@)) = [(a') = 0. (B.9) 
t-tm 

Defining h(t) = exp(-&t)) 

(B.lO) 

with 

(B.ll)  
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